Parameterized Approximations of Directed Steiner Networks

Martin Koreček Supervisor: doc. Andreas Emil Feldmann, Dr.

2023

An instance of DSN consists of

▶ a directed graph $G = (V_G, E_G)$,

An instance of DSN consists of

- ▶ a directed graph $G = (V_G, E_G)$,
- ▶ a non-negative edge-cost function $c : E_G \to \mathbb{R}^+$ and

An instance of DSN consists of

- a directed graph $G = (V_G, E_G)$,
- ▶ a non-negative edge-cost function $c : E_G \to \mathbb{R}^+$ and
- ▶ k demand pairs (s₁, t₁),..., (s_k, t_k) ∈ V²_G, also called terminal pairs.

An instance of DSN consists of

- a directed graph $G = (V_G, E_G)$,
- ▶ a non-negative edge-cost function $c : E_G \to \mathbb{R}^+$ and
- ▶ k demand pairs (s₁, t₁),..., (s_k, t_k) ∈ V²_G, also called terminal pairs.

The goal is to compute a minimum-cost subgraph of G containing a directed $s_i \rightarrow t_i$ path for each $1 \le i \le k$.

The demand pairs define a "pattern graph" $H = (V_H, E_H)$

•
$$V_H = \{s_1, t_1, \ldots, s_k, t_k\},\$$

$$\triangleright E_H = \{s_1t_1,\ldots,s_kt_k\}.$$

The demand pairs define a "pattern graph" $H = (V_H, E_H)$

►
$$V_H = \{s_1, t_1, ..., s_k, t_k\},\$$

$$\triangleright E_H = \{s_1t_1,\ldots,s_kt_k\}.$$

• This yields an alternative form of the DSN instance, $\Delta = (G, H, c).$

Special cases

Directed Steiner Tree (DST)

The output network is required to connect one "root node" to k terminals.

Theorem (Karp, 1972) DST is NP-complete.

Theorem (Dreyfus, Wagner, 1971) DST admits a $3^k \cdot n^{\mathcal{O}(1)}$ -time algorithm.

Special cases

Strongly Connected Steiner Subgraph (SCSS)

A strongly connected component with k selected terminals is required.

Theorem (Guo et al., 2011)

SCSS is W[1]-hard parameterized by k.

Theorem (Halperin, Krauthgamer, 2003)

There can be no polynomial time $\mathcal{O}(\log^{2-\epsilon} n)$ -approximation algorithm for SCSS (for any $\epsilon > 0$), unless $NP \subseteq ZTIME(n^{polylog(n)})$.

$\mathcal{H}\text{-}\mathsf{DSN}$

Definition

For a class \mathcal{H} of directed graphs, the \mathcal{H} -DSN is the special case of DSN where the pattern graph H is required to be in \mathcal{H} .

Theorem (Feldmann, Marx, 2017)

Given a class of pattern graphs H with k edges,

- either there are constants λ, δ such that H ⊆ C^{*}_{λ,δ}, in which case H-DSN can be solved in FPT time f(k) · n^{O(1)},
- or, if there are no such constants λ and δ, H-DSN is W[1]-hard (for parameter k).

Theorem (Feldmann, Marx, 2017)

Given a class of pattern graphs \mathcal{H} with k edges,

- either there are constants λ, δ such that H ⊆ C^{*}_{λ,δ}, in which case H-DSN can be solved in FPT time f(k) · n^{O(1)},
- or, if there are no such constants λ and δ, H-DSN is W[1]-hard (for parameter k).

Theorem (This thesis)

In the second case of the previous theorem (if there are no λ and δ such that $\mathcal{H} \subseteq C^*_{\lambda,\delta}$), there is no FPT $(\frac{4}{3} - \epsilon)$ -approximation algorithm for \mathcal{H} -DSN, parameterized by k, unless Gap-ETH fails.

Theorem (Feldmann, Marx, 2017)

Given a class of pattern graphs \mathcal{H} with k edges,

- either there are constants λ, δ such that $\mathcal{H} \subseteq C^*_{\lambda, \delta}$, in which case \mathcal{H} -DSN can be solved in FPT time $f(k) \cdot n^{\mathcal{O}(1)}$,
- or, if there are no such constants λ and δ, H-DSN is W[1]-hard (for parameter k).

Theorem (This thesis)

In the second case of the previous theorem (if there are no λ and δ such that $\mathcal{H} \subseteq C^*_{\lambda,\delta}$), there is no FPT $(\frac{4}{3} - \epsilon)$ -approximation algorithm for \mathcal{H} -DSN, parameterized by k, unless Gap-ETH fails. Corollary

No parameterized approximation scheme for the W[1]-hard cases.

Denote by PATH the class of directed paths.

Theorem (This thesis)

There is a $2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ -time 2-approximation algorithm for PATH-DSN. (k is the number of edges of the pattern graph)

High-level idea: Guess what terminal vertices participate in the strongly connected components of an optimal solution.

Denote by PATH the class of directed paths.

Theorem (This thesis)

There is a $2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ -time 2-approximation algorithm for PATH-DSN. (k is the number of edges of the pattern graph)

High-level idea: Guess what terminal vertices participate in the strongly connected components of an optimal solution.

An approximation preserving reduction from SCSS shows this ratio is tight:

Theorem (Chitnis et al., 2021)

Assuming Gap-ETH, it is impossible to $(2 - \epsilon)$ -approximate SCSS for any $\epsilon > 0$ in FPT time, parameterized by k.

Let p-PATH be the class of directed graphs composed of (at most) p paths.

Theorem (This thesis) There is a $k! \cdot 4^k \cdot n^{\mathcal{O}(p)}$ -time 2-approximation algorithm for p-PATH-DSN. (k being the number of edges of the pattern graph)

Requires guessing more about the structure of an optimum solution.

Long caterpillars

Theorem (This thesis)

There is an $8^k \cdot (k!)^2 \cdot n^{\mathcal{O}(1)}$ -time 3-approximation algorithm for the CAT-DSN problem.

(k being the number of edges of the pattern graph)

Long caterpillars

Theorem (This thesis)

There is an $8^k \cdot (k!)^2 \cdot n^{\mathcal{O}(1)}$ -time 3-approximation algorithm for the CAT-DSN problem.

(k being the number of edges of the pattern graph)

Open question: Can we obtain a better approximation ratio?

Let (χ, π) -CAT denote the class of graphs obtainable as unions of (at most) χ caterpillars and π paths.

Theorem (This thesis) There is an $f(k) \cdot n^{\mathcal{O}(\chi+\pi)}$ -time $(2 + \chi)$ -approximation algorithm for (χ, π) -CAT-DSN.

Further topics

Significant unsolved cases

Thank you for listening.