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Directed Steiner Network (DSN)

An instance of DSN consists of

▶ a directed graph G = (VG ,EG ),

▶ a non-negative edge-cost function c : EG → R+ and

▶ k demand pairs (s1, t1), . . . , (sk , tk) ∈ V 2
G , also called terminal

pairs.

The goal is to compute a minimum-cost subgraph of G containing
a directed si → ti path for each 1 ≤ i ≤ k .
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Directed Steiner Network (DSN)

The demand pairs define a “pattern graph” H = (VH ,EH)

▶ VH = {s1, t1, . . . , sk , tk},
▶ EH = {s1t1, . . . , sktk}.

▶ This yields an alternative form of the DSN instance,
∆ = (G ,H, c).
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Special cases

Directed Steiner Tree (DST)

The output network is required to connect one “root node” to k
terminals.

Theorem (Karp, 1972)

DST is NP-complete.

Theorem (Dreyfus, Wagner, 1971)

DST admits a 3k · nO(1)-time algorithm.



Special cases

Strongly Connected Steiner Subgraph (SCSS)

A strongly connected component with k selected terminals is
required.

Theorem (Guo et al., 2011)

SCSS is W[1]-hard parameterized by k.

Theorem (Halperin, Krauthgamer, 2003)

There can be no polynomial time O(log2−ϵ n)-approximation
algorithm for SCSS (for any ϵ > 0), unless
NP ⊆ ZTIME(npolylog(n)).



H-DSN

Definition
For a class H of directed graphs, the H-DSN is the special case of
DSN where the pattern graph H is required to be in H.



H-DSN

Theorem (Feldmann, Marx, 2017)

Given a class of pattern graphs H with k edges,

▶ either there are constants λ, δ such that H ⊆ C∗
λ,δ, in which

case H-DSN can be solved in FPT time f (k) · nO(1),

▶ or, if there are no such constants λ and δ, H-DSN is
W [1]-hard (for parameter k).

Theorem (This thesis)

In the second case of the previous theorem (if there are no λ and δ
such that H ⊆ C∗

λ,δ), there is no FPT (43 − ϵ)-approximation
algorithm for H-DSN, parameterized by k, unless Gap-ETH fails.

Corollary

No parameterized approximation scheme for the W[1]-hard cases.
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Constant-factor approximation

Denote by Path the class of directed paths.

Theorem (This thesis)

There is a 2O(k) · nO(1)-time 2-approximation algorithm for
Path-DSN.
(k is the number of edges of the pattern graph)

High-level idea: Guess what terminal vertices participate in the
strongly connected components of an optimal solution.

An approximation preserving reduction from SCSS shows this ratio
is tight:

Theorem (Chitnis et al., 2021)

Assuming Gap-ETH, it is impossible to (2− ϵ)-approximate SCSS
for any ϵ > 0 in FPT time, parameterized by k.
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Constant-factor approximation

Let p-Path be the class of directed graphs composed of (at most)
p paths.

Theorem (This thesis)

There is a k! · 4k · nO(p)-time 2-approximation algorithm for
p-Path-DSN.
(k being the number of edges of the pattern graph)

Requires guessing more about the structure of an optimum
solution.



Constant-factor approximation

Long caterpillars

Theorem (This thesis)

There is an 8k · (k!)2 · nO(1)-time 3-approximation algorithm for
the Cat-DSN problem.
(k being the number of edges of the pattern graph)

Open question: Can we obtain a better approximation ratio?
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Combining the cases

Let (χ, π)-Cat denote the class of graphs obtainable as unions of
(at most) χ caterpillars and π paths.

Theorem (This thesis)

There is an f (k) · nO(χ+π)-time (2 + χ)-approximation algorithm
for (χ, π)-Cat-DSN.



Further topics

Significant unsolved cases



Thank you for listening.


