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Abstract: An instance of the Directed Steiner Network (DSN) problem consists
of a directed graph G with edge costs, and k so called “terminal“ vertex pairs.
The task is to find a minimum-cost subgraph of G in which all terminal pairs are
connected by a path. This generalizes several NP-hard problems.

The terminal pairs induce the so called “pattern graph“, a digraph on a subset
of vertices of G. We investigate the DSN problem restricted to certain classes of
pattern graphs. It has been shown that the optimum may be found for certain
classes in FPT time parameterized by k, and that this is impossible for all other
classes of graphs, assuming FPT ̸= W[1].

This leads to the question whether the hard classes may be approximated in
FPT time. We prove that no FPT approximation scheme may exist for any of
the W[1]-hard classes, based on a stronger hypothesis, the Gap-ETH. We then
give FPT algorithms with constant approximation guarantees for special classes
of pattern graphs.
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Introduction
In this thesis, we deal with one of the most general Steiner problems:

Definition 1. An instance ∆ of the Directed Steiner Network (DSN)
problem consists of

• a directed graph G = (VG, EG),
• a non-negative edge-cost function c : EG → R+ and
• k demand pairs (s1, t1), . . . , (sk, tk) ∈ V 2

G, also called terminal pairs.
The goal is to compute a minimum-cost subgraph of G containing a directed
si → ti path for each 1 ≤ i ≤ k.

The demand pairs define a digraph H on the vertex set {s1, t1, . . . , sk, tk}
with arcs {s1t1, . . . , sktk}. We call this the pattern graph of ∆ and the whole
instance can be equivalently defined as the triplet ∆ = (G, H, c).

Such problems arise when designing networks given an underlying structure,
where connections between nodes need to be paid for. Immediate applications
arise in network design [1] and connectivity [2, 3]. DSN generalizes several com-
binatorial problems: the polynomially solvable shortest path and minimum span-
ning tree problems in undirected graphs are generalized by the Steiner Tree,
one of the best known NP-hard optimization problems, listed in Richard Karp’s
seminal paper [4] among 20 other problems. The DSN generalizes this idea by
considering directed graphs and optimizing for general connectivity between the
graph’s nodes. This problem has seen much algorithmic progress in recent years,
as we will discuss.

The well-studied Directed Steiner Tree (DST) problem is a special case
of DSN, where there is one “root” terminal and the output network is required
to connect the root to every other terminal. The DST is NP-hard (by a triv-
ial reduction from Steiner Tree), and parameterized by the pattern graph’s
number of edges k, it is FPT by the Dreyfus and Wagner algorithm [5].

Another important special case is the Strongly Connected Steiner Sub-
graph (SCSS) problem, where k terminal vertices of a directed graph are chosen
and we are interested in the minimum-cost subgraph containing a path from any
terminal to any other terminal. In other words, the SCSS corresponds to the
DSN where the pattern graph is a directed cycle. This problem is not known to
be FPT any longer, and it is in fact proven to be W[1]-hard [6].

Special cases like these motivate the following definition.

Definition 2. For a class H of directed graphs, the H-DSN is the special case of
DSN where the pattern graph H is required to be in H.

This approach only restricts the pattern graphs, with no further requirements
on the large graph G. Restricting G also leads to intriguing problems: assuming
e.g. the graph to contain the vu edge whenever it contains uv yields interesting
algorithmic results [7]. The approaches may also be combined, as done by [8],
where a complete characterization of the parameterized complexity of H-DSN is
given for planar graphs (assuming ETH).

We will mainly build on [6], where a dichotomy is proven for the complexity of
H-DSN problems. We formalize their result in Section 1.1. Informally speaking,
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they introduce caterpillar graphs: a λ-caterpillar is formed by a path of length
λ, with each of its nodes further connected to an arbitrary number of leaf nodes,
as illustrated in Figure 1. They further define C∗

λ,δ as the class of λ′-caterpillars
for λ′ ≤ λ, to which at most δ arbitrary edges may be added (in fact, C∗

λ,δ is
the closure of such class under transitive equivalence and the reversal of edge
directions).

Figure 1: A 4-caterpillar graph.

The statement informally says the following, which we state precisely in The-
orem 1.

For a class of pattern graphs H,
• either there are constants λ, δ such that H ⊆ C∗

λ,δ, in which case there is an
FPT algorithm for H-DSN, parameterized by k,

• or, if there are no such constants λ and δ, H-DSN is W [1]-hard (for pa-
rameter k), and therefore unlikely to be solvable in FPT time.

Our results
Given the full characterization of the FPT-computability of H-DSN provided by
Theorem 1, we are curious about the W [1]-hard cases. Since it is likely impossible
to solve such problems in FPT time, we inquire about approximation. Can we
find FPT algorithms with favourable approximation bounds for certain W [1]-hard
classes? Or can we even get an approximation scheme for some of them?

The ultimate challenge would be finding an approximation analogue to Theo-
rem 1: a statement that would, for every recursively enumerable class of directed
graphs H, provide an FPT approximation algorithm for H-DSN, and a matching
approximation lower bound, based on plausible conjectures. We don’t manage
to fully reach this goal, but we make progress that allows us to answer several
questions in this direction.

In Chapter 2, and Theorem 11 in particular, we prove that only constant-
factor approximation is possible in FPT time, for any of these cases, if Gap-ETH
holds (we will introduce this conjecture shortly). Theorem 11 essentially extends
Theorem 1 by showing, under the assumption of Gap-ETH, the following.

If there are no constants λ, δ such that H is a subclass of C∗
λ,δ, there is no

f(k) · nO(1)-time (4
3 − ϵ)-approximation algorithm for H-DSN, for any ϵ > 0 and

any function f .

In Chapters 3 and 4, we will design constant-factor FPT approximation al-
gorithms for several W [1]-hard cases of H-DSN. As a prelude, in Section 3.1,
we design an FPT 2-approximation algorithm for H-DSN where H is the class
of directed paths. While being the simplest case we approximate in this thesis,
the factor 2 is optimal under Gap-ETH, and no constant-factor approximation is
possible in polynomial time, unless P = NP.
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In Section 3.2, we extend this for H being the class of patterns composed
of several directed paths (even more, only the condensation graph needs to be
obtained this way). This already covers many classes of patterns, but leaves
significant gaps. In particular, such algorithm doesn’t cover the subclasses of
C∗

λ,δ.
In Chapter 4, we cover and extend the cases of H-DSN currently known to

be constant-factor approximable in FPT, such as the SCSS, by introducing a
quite general family of patterns which we call (χ, π)-Cat: the class of directed
graphs whose condensation is the union of at most χ caterpillars and at most π
paths, of arbitrary length. We show how to approximate the DSN restricted to
such patterns, in Theorem 17. All of the approximation algorithms we give have
optimal approximation ratios under certain complexity assumptions.

We discuss the obstacles to discovering the full FPT approximation complexity
landscape of H-DSN, and directions to help reach it, in Section 4.2. In particular,
we introduce conjectures for certain pattern graph classes which we believe are
likely to hold.
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1. Preliminaries
Besides concepts elementary for theoretical computer science, such as graph, NP-
hardness, decidability and Turing enumerability, we expect familiarity with

• parameterized algorithms: classes FPT, XP, the W-hierarchy and the Ex-
ponential Time Hypothesis (ETH) as treated e.g. by the book [9],

• approximation algorithms, approximation schemes (see e.g. [10]).
Our inapproximability results require the Gap-ETH hypothesis. For complete-

ness, we state it here. We will not build on it directly, but we use its implications
that we state throughout the thesis.

For a CNF formula Φ with m clauses, let val(Φ) denote the maximum possible
number of satisfied clauses divided by m.

Conjecture 1. (Gap-ETH hypothesis) There exist constants ϵ, δ such that there
is no O(2δn)-time algorithm that, given a 3-CNF formula Φ with n variables,
distinguishes between these two cases1:

• val(Φ) = 1,
• val(Φ) < 1 − ϵ.

The standard version of ETH implies (via the PCP theorem [11][12][13]) a
weaker version of the Gap-ETH. It is open whether Gap-ETH follows from ETH
(or SETH), making it a strong conjecture. More discussion on this hypothesis
and why it seems plausible to assume it (at least in the sense that countering it
is currently far beyond our reach) can be found in Appendix F of [14].

1.1 The complexity landscape of exact compu-
tation

To properly state the main theorem that we build on, we need to define caterpillar
graphs.

Figure 1.1: Two 4-caterpillar graphs: an out-caterpillar and an in-caterpillar.

Definition 3. A λ-in-caterpillar is a digraph constructed as follows:
• take a path (v1, . . . , vλ) on λ vertices,
• add a new vertex w and connect it to any vertex vi of the path by the arc wvi.

Repeat this step an arbitrary number of times.
Similarly, we would define a λ-out-caterpillar, where the arcs formed in the second
step lead out of the path vertices rather than into them. An out-caterpillar may
be formed from an in-caterpillar by the reversal of edges. A 0-caterpillar is the
empty graph.

1The algorithm’s output is arbitrary if neither of the two cases occurs.
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An illustration of this definition is given in Figure 1.1. Further, we define Cλ,δ

as the class of all directed graphs H such that after removing a subset F ⊆ EH

of edges of size at most δ, EH \ F span a λ′-caterpillar for some λ′ ≤ λ.
The transitive closure of a directed graph arises by adding the uw edge when-

ever there are edges uv and vw for some vertices u, v, w (repeatedly, while ap-
plicable, so that the closure is another digraph). We call two directed graphs
transitively equivalent if their transitive closures are isomorphic.

It is easy to see that a solution to the DSN for a specific pattern graph H
simultaneously solves for all transitively equivalent graphs to H. Any choice of H
from this equivalence class provides the same problem statement. Let C∗

λ,δ denote
the class of graphs transitively equivalent to elements of Cλ,δ. We can now state
the result precisely:

Theorem 1. ([6, Theorem 1.2]) Let H be a recursively enumerable class of pat-
terns (directed graphs).

1. If there are constants λ and δ such that H ⊆ C∗
λ,δ, then H-DSN can be solved

optimally in time 2k+τω log ωnO(ω). Here, k = |EH | is the number of terminal
pairs and we define ω = (1 + λ)(1 + δ) and τ is the vertex cover number of
the given input pattern H ∈ H (which is bounded by k).

2. Otherwise, if there are no such constants λ and δ, the problem is W [1]-hard
for parameter k.

1.2 Relevant classes of pattern graphs
Theorem 1 implicitly uses the observation that for H-DSN, it makes no difference
if we assume H to be closed under transitive equivalence. By similar reasoning
we may require other conditions for H. They are covered by the following:

Observation 1. We may w.l.o.g. assume that the classes of pattern graphs we
consider are closed under

1. transitive equivalence,
2. identifying terminals, meaning merging two or more into one, ignoring any

edges between them,
3. taking path-preserving subgraphs (to be defined), and
4. reversing the direction of every edge.

We will first discuss separately each point 2. to 4. After that, we prove that
if a class H is not closed under these operations and Hc is the closure, there is
a parameterized reduction from Hc-DSN to H-DSN, and it is therefore viable
to assume we work with Hc in the first place: if we have an FPT algorithm for
H, we also do for Hc. Naturally, the complexity changes (even the number of
terminals itself changes by these operations), but for answering questions about
FPT approximability, this doesn’t matter. The reader may skip this technical
proof, which we include for completeness and because Observation 1 will simplify
our labour later.

To see that point 2. is reasonable, consider a DSN instance (G, H, c) such
that H may be obtained by identifying a certain set {u1, . . . , um} of terminals of
H ′ ∈ H into one terminal vertex v. We can equivalently solve this instance with
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an instance (G′, H ′, c′): G′ arises from G by changing the vertex v (corresponding
to the terminal v ∈ H) into a directed m-clique Q with zero-cost edges. Edges
previously leading to and from v can lead into and from a fixed vertex in Q. In H ′,
the identified terminals {u1, . . . , um} shall correspond to the m vertices of Q. This
solves (G, H, c), and any approximation factor guarantee for (G′, H ′, c′) translates
directly to the same guarantee for this solution.

Point 3.: we call a subgraph H of H ′ path-preserving if for each pair u, v ∈
VH ⊆ V ′

H , such that there is a path in H ′ from u to v, this whole path is also
included in H.

The feasibility of this assumption follows similarly to 2.: Let H be a path-
preserving subgraph of H ′. Assume a fixed homomorphism of H into H ′, so that
v ∈ H is also v ∈ H ′. We may solve ∆ = (G, H, c) with an instance (G′, H ′, c′).
H ′ is a supergraph of H, and so we only add into G′ the vertices and edges
of H ′ \ H. The added edges will have cost zero. As there is no path in H ′

between the vertices of its subgraph H, the instances are equivalent. Again, any
approximation guarantee remains valid.

Point 4.: if H arises from H ′ by reversing the direction of all edges, the
instance ∆ = (G, H, c) may be converted into ∆′ = (G′, H ′, c′), such that also all
edges in G′ are reversed. Trivially, these instances are equivalent: reversing the
edges of a solution to ∆′ gives a solution of ∆ with the same cost and vice versa.

Notice that the reductions discussed for these operations can be combined
together, and so we may assume the closure not just for each separately, but for
iterative application of any combination of these operations.

We now show an FPT reduction from Hc-DSN to H-DSN , where Hc is the
closure of H under the operations of Observation 1. More precisely, we restrict
ourselves to the assumption that our algorithms only deal with decidable classes
of pattern graphs. This only seems natural, as it is unclear how an algorithm for
Hc-DSN would be built for undecidable Hc. A looser restriction of H may be
assumed however: for generality, we only require it to be recursively enumerable.

The statement of the following lemma and the proof is almost the same as that
of [6, Lemma 5.2], only that they assume closure under a subset of the operations.
We include the proof for completeness.
Lemma 2. Let H be a recursively enumerable class of directed graphs. Let Hc be
the closure of H under the operations of Observation 1 and let H′ be a decidable
subclass of Hc. Then there is an FPT reduction from H′-DSN to H-DSN with
parameter k.

Proof. As a first remark, it is clear that detecting whether a graph H ′ with k′

edges (and no isolated vertices) is equivalent, under iterative application of the
operations of Observation 1, to a graph H on k edges, can be decided in time
h(k + k′) for some h. Even a brute-force algorithm’s running time depends only
on the number of edges.

Fix an enumeration H1, H2, . . . of the digraphs of H. Define φ : Hc → N as

φ(H ′) = min{i ∈ N | H ′ can be obtained from Hi using the four operations}.

Further, define g : Hc → N to be

g(H ′) = max{|VHi
| | 1 ≤ i ≤ φ(H ′)}.
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Lastly, define

f(k) = max{φ(H ′) · h(k + g(H ′)) | H ′ ∈ H′ such that |VH′ | = k}2.

We remark that f only depends on k and the classes H, H′. It is also com-
putable: as H′ is decidable, we may iterate through all of its k-vertex patterns
and enumerate H for each separately to determine φ(H ′) · h(k + g(H ′)).

The reduction itself proceeds as follows: given an instance ∆′ = (G′, H ′, c′) of
H′-DSN (so that H ′ ∈ H′), we enumerate H until finding a H convertible to H ′

under Observation 1. Observe that this requires at most f(|VH′ |) steps.
Once we find such H, we also have the sequence of operations that convert

H to H ′ and as discussed above, in the treatment of each operation, we have an
instance ∆ = (G, H, c) that is equivalent to ∆′ in an approximation-preserving
manner.

The running-time of this reduction is huge of course. As stated, we mostly
investigate whether H-DSN does or does not have an FPT approximation algo-
rithm for certain H, with little emphasis on exact time complexity. We should
not forget about this however, and neither about the fact that the operations of
Observation 1 potentially change the parameter k.

On the other hand, we only use Lemma 2 for our approximation-hardness
results, while our algorithms in Chapters 3 and 4 work with H-DSN for classes
H that will turn out to be naturally closed under these operations. The running
time of this reduction doesn’t therefore impact our results negatively.

1.3 Obstruction graphs

Figure 1.2: The “obstruction” graphs. A cycle and two diamonds, out-diamond
and in-diamond, equivalent to each other by edge reversal.

To be able to show the inapproximability of H-DSN for H ⊈ C∗
λ,δ, we have

to investigate the proof of case 2. in Theorem 1. It is shown in the proof that
if H ⊈ C∗

λ,δ, its closure under operations from Observation 1 contains one of two
“obstruction” graphs of arbitrary size. These graphs are defined as follows:

Definition 4. (Obstruction graphs)
• A cycle as a pattern graph ensures that the vertices of any feasible solution

are strongly connected. More precisely, for any two terminals t1 and t2, any
feasible solution must contain a directed path from t1 to t2. This special
case is the SCSS problem that we have already discussed.

2It is relevant to ask how we define f(k) when there is no graph in H′ with k vertices. We
will never use f in these cases however, so it may be defined arbitrarily there.

8



• An out-diamond is formed as follows: take a set of m vertices v1, . . . , vm

and two extra “root” vertices r1 and r2. For each vi, add directed edges r1vi

and r2vi. An in-diamond is formed from an out-diamond by edge reversal.

These obstruction graphs are illustrated in Figure 1.2. Feldmann et al. [6]
proved that if H is not a subset of C∗

λ,δ for any fixed constants λ, δ, then the
closure of H under the operations from Observation 1 includes every directed
cycle or every diamond. More precisely, they only assume closure under transitive
equivalence and identifying vertices. This yields five obstruction graph instead of
two, but they are such that Observation 1 easily reduces them to the two stated.

These two types of instances are W [1]-hard for parameter k [6] (we will see
stronger hardness results for both). The W [1]-hardness of DSN on classes that
are not sub-classes of a C∗

λ,δ follows: for each such class H, we have a polynomial-
time reduction (which is in fact identity) from one of the two W [1]-hard problems
to H-DSN.

1.4 Inapproximability of SCSS
In the light of the previous section, we may benefit from an inapproximabil-
ity proof given by [7] for one of the two obstruction graphs: they show FPT-
inapproximability for the Strongly Connected Steiner Subgraph prob-
lem.

Theorem 3. ([7, Theorem 1.9]) Assuming Gap-ETH, for any ϵ > 0 and any
computable function f(k), there is no f(k) · nO(1)-time algorithm that computes a
(2 − ϵ)-approximation for SCSS.

Figure 1.3: Using two star graphs to 2-approximate the SCSS problem. The in-
star is drawn with dashed edges.

Notice that Theorem 1 immediately gives a matching approximation algo-
rithm: if the given pattern graph is a cycle on the vertices v1, . . . , vm of a digraph
G, it is equivalent to the following. Take an out-star leading from v1 to the rest
of vertices v2, . . . , vm, and an in-star leading in the opposite direction. This is
transitively equivalent to the cycle. The star graphs are 1-caterpillars, and so
we may solve each separately, obtaining minimum-cost solutions. Since an SCSS
satisfies the conditions given by each star, the optimum cost of each is at most
the optimum cost of the solution to the SCSS. We thus obtain a 2-approximation
algorithm. This approach is illustrated in Figure 1.3. It was already observed by
[15]. We will reference this later.

Theorem 4. The Strongly Connected Steiner Subgraph (SCSS) problem has an
O∗(2k)-time 2-approximation algorithm.
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1.5 Other related work
To state other important results which we build on, we need to define the follow-
ing.

Definition 5. Maximum Coloured Subgraph Isomorphism (MCSI)
Input: An instance Γ = (G, {Vi}p

i=1, H) of MCSI consists of
• an undirected graph G = (VG, EG),
• a partitioning V1, . . . , Vp of the vertex set VG into p “colours”, and
• an undirected graph H = (VH , EH), called the supergraph of Γ, with vertex

set VH = {1, . . . , p}.
Goal: For each colour class i ∈ {1, . . . , p}, find one vertex vi ∈ Vi in G, such that
the number of edges ij ∈ EH of H (called superedges) for which vivj ∈ EG, is
maximized.

For a solution S, let m(S) = {vivj : ij ∈ EH} be the set of edges in G

satisfying the demands of H. Then we define the value of S to be val(S) = |m(S)|
|EH | ,

the fraction of edges ij ∈ EH such that vivj is satisfied by S. The value of an
instance val(Γ) is the maximum value achievable by a solution to Γ, so that an
instance with a solution satisfying all the demands given by H, has value 1.

The 2-ary Constraint Satisfaction Problem (2-CSP) may be seen as a refor-
mulation of MCSI. Assuming the Gap-ETH, [16] established a hardness result
for the 2−CSP, and thus also to MCSI. Building on the work of [7] and using a
reduction from MCSI to DSN, [16] further give the following for the general DSN
problem:

Theorem 5. Assuming Gap-ETH, for any constant ρ > 0, and any function f ,
there is no f(k) · nO(1)-time k1/4

2(log k)1/2+ρ -approximation algorithm for DSN.

See Corollary 4 in [16] for their discussion of this result: their proof yields
this approximation lower bound for the special case where the pattern graph is
the complete bipartite graph H = Kp,p = (A, B, E) with edges oriented in the
direction of the vertices of B. This way, k = p2.

[17] discovered a way to solve DSN optimally by finding the shortest path in
a cleverly constructed graph, obtaining an XP-time algorithm for this problem.

Theorem 6. There is an O(mn4k−2 + n4k−1 log n)-time algorithm that finds the
optimum for DSN, where n = |VG|, m = |EG|.

Using a very different approach, [6] obtain an alternative XP-time algorithm
for DSN.

There is also a polynomial-time algorithm developed by [18, Theorem 3.5],
getting arbitrarily close to an O(

√
k)-approximation of DSN:

Theorem 7. DSN can be approximated to within a factor of O(k1/2+ϵ) in poly-
nomial time, for any fixed ϵ > 0.
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2. No approximation scheme
Theorem 1 provides two obstruction graphs, the SCSS and the diamond. It has
been proven that the SCSS cannot be (2 − ϵ)-approximated in FPT time, if
Gap-ETH holds. In this section, we prove a 4

3 -approximation lower bound for
the second obstruction, the diamond, obtaining an inapproximability result for
arbitrary H-DSN, where H is not a subclass of C∗

λ,δ for constants λ, δ.
We will need an inapproximability result known for the special case of MCSI

(Definition 5) where H is a complete graph. It was shown by [7, Corollary 7.3].

Theorem 8. Let f, h : N → N be any computable functions, such that h(p) =
o(1). Assuming randomized Gap-ETH, there is no f(p) · nO(1)-time algorithm
that, given an instance Γ = (G, {Vi}p

i=1, H) of MCSI where H is a p-clique, can
distinguish between the cases

• (YES) val(Γ) = 1, and
• (NO) val(Γ) < p−h(p),

2.1 Inapproximability of the diamond case
We denote the H-DSN where H is the class of out-diamonds (the in-diamond
case is equivalent by edge reversal) as “Diamond-DSN”. The instance is formed
by a graph G with non-negative edge costs, disjoint root vertices r1, r2 ∈ VG and
a set of vertices T ⊆ VG, such that r1, r2 /∈ T . This specifies the pattern graph
with 2 |T | edges, one from each root to each terminal vertex in T .

In this section, we prove the following claim.

Theorem 9. Assuming Gap-ETH, for any ϵ > 0 and any computable function
f(k), there is no f(k)·nO(1)-time algorithm that computes a (4

3 −ϵ)-approximation
for Diamond-DSN.

To achieve this, we combine the proof layout for Theorem 3 by [7] with a
network construction of [6] (in their proof of Lemma 5.12 ).

Lemma 10. For every constant γ > 0, there exists a polynomial time reduction
that, given an instance Γ = (G, H, V1, . . . , Vp) of MCSI where the subgraph H is a
complete graph, produces an instance (G′, r′

1, r′
2, T ′) of Diamond-DSN, such that

• (completeness) if val(Γ) = 1, then there exists a subgraph N ′ ⊆ G′ of cost
(3 + γ

1
5 ) that is a feasible solution to the Diamond-DSN instance,

• (soundness) if val(Γ) < γ, then every network forming a feasible solution to
our instance (G′, r′

1, r′
2, T ′) of Diamond-DSN has cost more than 4(1−γ

1
5 ),

and
• (parameter dependency) the number of target terminals |T ′| is p(p−1). This

makes the number of terminal pairs 2p(p − 1).

Proof. We assume w.l.o.g. that in G, there is no edge between any two vertices
of the same partition Vj. We construct an instance of DSN where the pattern
graph will be a diamond with two roots r′

1, r′
2 and the leaf (terminal) set T ′ =

{ℓij | 1 ≤ i, j ≤ p, i ̸= j}. This way, we have |T ′| = p(p − 1), granting parameter
dependency.

11
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1 r′

2

yi0

y1

0

yp

yj0

w0γ1/5/p

v0

wj

0

w1

wp

vi

zij

0

ze

1/
(︁

p
2

)︁0

T ′ :
ℓij

1/
(︁

p
2

)︁
1/
(︁

p
2

)︁

Figure 2.1: A schematic illustration of our reduction in Lemma 10. Only the
edges of types yiw0, zijze and wjℓij are assigned nonzero costs.

Besides the terminal vertices, the constructed input graph G′ contains the
following.

• A vertex yi for every i ∈ {1, . . . , p} representing the partition Vi. For each
i, there is a zero-cost edge from r′

1 to yi.
• For each 1 ≤ i < j ≤ p, a vertex zij, to which r′

2 is connected with a
zero-cost edge.

• Further, we put for each vertex w of some Vj a vertex “w0” in G′, and an
edge of cost γ1/5

p
connecting yj to w0 and

• For any vertex w of G, besides w0, we put p vertices into G′: w1 up to wp,
and a zero-cost edge from w0 to each of those p vertices.

• for each edge in G connecting a vertex of Vi to one of Vj, we put a vertex
ze, and an edge of cost 1/

(︂
p
2

)︂
from zij to ze, in G′.

• For every i, j ∈ {1, . . . , p} such that i ̸= j and every w ∈ Vi, we have an
edge wjℓij of cost 1/

(︂
p
2

)︂
, and

• for each vertex w, which occupies a certain Vi and each edge e = wv, where
v ∈ Vj, we have a zero-cost edge zewj (thus, we also obtain the edge zevi).

This construction is illustrated in Figure 2.1. Clearly, this DSN instance can be
built in polynomial time. Except for our edge cost choices, it is exactly the same
as the instance built by [6], and their Figure 4 provides an alternative illustration
of the situation. In our case, only three types of edges have positive costs.

(Completeness) If val(Γ) = 1, then there exists (v1, ..., vp) ∈ V1×...×Vp that
induces a p-clique in Γ. A feasible solution to the constructed Diamond-DSN
instance may, out of the positive-cost arcs, only include

• the p arcs of the form yivi0 (for i = 1, ..., p),
•
(︂

p
2

)︂
ones of the form zijz{vi,vj}, corresponding to the

(︂
p
2

)︂
edges of the clique,

and analogously
• 2

(︂
p
2

)︂
-cost arcs of the form vijℓij (and vjiℓji).

12



All this sums up to the claimed cost γ1/5 + 1 + 2 = 3 + γ1/5.
(Soundness) Suppose that there is a network N = (V (G′), E∗) of total cost

φ ≤ 4(1 − γ
1
5 ), solving our instance of Diamond-DSN.

Now let Si ⊆ Vi be the set of all vertices w ∈ Vi such that the arc yiw0 is
included in E∗ and let S := S1 ∪ ... ∪ Sp. Each arc of the form yiw0 has cost
γ1/5/p, so

|S| ≤ φ

(γ1/5/p) <
4

(γ1/5/p) = 4γ− 1
5 p.

If we consider every pair i, j such that 1 ≤ i < j ≤ p, there need to be paths
from r′

1 and r′
2 into ℓij and ℓji, as both are terminal. Only one type of arc (the

wjℓij type) leads into them, so for a given (i, j) pair, at least two such arcs (each
of cost 1/

(︂
p
2

)︂
) need to be included in the solution N . Another arc of this cost is

necessary of the type zijze. By this simple reasoning, we see that even without
considering the arcs of type yiw0, each pair (i, j) contributes to the total cost of
N by at least 3

(p
2)

units. Moreover, an arc of the wjℓij type only leads to one
terminal, and similarly, from ze (connecting Vi and Vj), only the two terminals ℓij

and ℓji are reachable. Thus, the positive-cost edges discussed for a pair (i, j) only
contribute to connecting r′

1 and r′
2 to the two leaves ℓij and ℓji, i.e., the 3/

(︂
p
2

)︂
necessary units of cost are distinct for each pair.

As there are
(︂

p
2

)︂
such pairs (i, j), the 1/

(︂
p
2

)︂
-cost edges contribute to the cost

of N , in total, by at least
(︂

p
2

)︂
· 3

(p
2)

= 3 units. Since the cost of N is φ, at most(︂
p
2

)︂
(φ − 3) other edges of cost 1/

(︂
p
2

)︂
may be part of N .

Thus, there are at most
(︂

p
2

)︂
(φ − 3) ≤

(︂
p
2

)︂
(1 − 4γ

1
5 ) pairs (i, j) that require

more than the three necessary 1
(p

2)
-cost arcs. To reformulate, at least 4γ

1
5
(︂

p
2

)︂
pairs

require just 3 such arcs. We call the set of such pairs P .
One more thing we need to observe is that for each (i, j) ∈ P , there exists

u ∈ Si and v ∈ Sj such that uv ∈ EG, but that is trivial, since the uv edge is
exactly the one corresponding to the selected zijze-type arc in N . The u and v
need to be part of Si and Sj, since there is no other way r′

1 would be connected
with ℓij and ℓji.

Now we just finish our analogy to the technical part of the proof of Lemma
7.6 in [7]. Let ϕ : VH → VG be a random assignment where each ϕ(i) is chosen
independently uniformly at random from Si. We saw that for each (i, j) ∈ P ,
there exist vertices in Si and Sj connected by an edge in G, meaning that for
such a pair, the probability of ϕ(i) and ϕ(j) being connected is at least 1

|Si|·|Sj | .
We are going to use a special variant of Hölder’s inequality for three variables1,
giving us

(
∑︂

(i,j)∈P

1
|Si| · |Sj|

) · (
∑︂

(i,j)∈P
|Si|) · (

∑︂
(i,j)∈P

|Sj|) ≥ (
∑︂

(i,j)∈P
( 1
|Si| · |Sj|

) 1
3 · |Si|

1
3 · |Sj|

1
3 )3

= (
∑︂

(i,j)∈P
1 1

3 )3

= |P|3.
1(
∑︁n

r=1 a3
r)(
∑︁n

r=1 b3
r)(
∑︁n

r=1 c3
r) ≤ (

∑︁n
r=1 arbrcr)3
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And we are able to lower-bound the expected number of superedges covered by ϕ
as

∑︂
(i,j)∈P

1
|Si| · |Sj|

≥ |P|3

(∑︁(i,j)∈P |Si|)(
∑︁

(i,j)∈P |Sj|)

≥ |P|3

((p − 1)|S|)2

(all |S| total vertices for all (p − 1) i-s and j-s)

>
(4γ

1
5
(︂

p
2

)︂
)3

(p − 1)2 · (4γ− 1
5 p)2

(by plugging in bounds for |S| and P)

= γ

(︄
p

2

)︄
.

Hence, there exists a solution to Γ of density more than γ, proving that val(Γ)
is in fact above this bound. This is a contradiction.

All three desired properties are checked.

Now we can prove Theorem 9 itself:
Suppose that, for some constant ϵ > 0 and for some function f(k) independent
of n, there exists an f(k) nO(1)-time (4

3 − ϵ)-approximation algorithm A for Di-
amond-DSN.

Clearly, we can find γ∗ = γ∗(ϵ) such that 4(1−γ∗ 1
5 )

3+γ∗ 1
5

≥ (4
3 − ϵ).

Once more copying the approach of [7], we develop an algorithm B that
contradicts Theorem 8, for h(p) := log(1/γ∗)/ log p. Given an MCSI instance
(G, H, V1, ..., Vp) (where H is a clique), B uses the reduction to Diamond-DSN
of Lemma 10 to obtain an instance on a digraph G′ with k = 2p(p − 1) terminal
pairs. Using the cost obtained with algorithm A, our new algorithm B

• answers YES if the cost is at most 4(1 − γ∗ 1
5 )

• answers NO if higher.
To see the correctness of B, first observe that in the YES case (val(Γ) = 1),
Lemma 10 guarantees that the optimal solution in G′ has cost at most 3 + γ∗ 1

5

and since A is a (4
3 − ϵ)-approximation algorithm, it returns a solution of cost at

most (3 + γ∗ 1
5 ).(4

3 − ϵ) ≤ 4(1 − γ∗ 1
5 ) by our choice of γ∗, i.e., B correctly answers

YES.
In the NO case, our soundness property guarantees that the optimum in G′

is more than 4(1 − γ∗ 1
5 ) and B thus also correctly answers NO.

This contradiction to Theorem 8 concludes the proof of Theorem 9.

2.1.1 Conclusion
Unlike the SCSS case, we cannot show a matching approximation algorithm. The
Diamond-DSN can trivially by 2-approximated again using two out-stars, whose
optimum can be computed in FPT time. We are unaware of an approximation
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algorithm guaranteeing a better factor. This hardness result only proves (4
3 − ϵ)-

inapproximability however. It is unclear if the proof can be improved to get a
tighter lower bound.

We have now established constant factor inapproximability for both obstruc-
tion graphs. This way we can strengthen the statement of Theorem 1:

Theorem 11. Let H be a recursively enumerable class of patterns (directed
graphs).

1. Either H ⊆ C∗
λ,δ for some constants λ, δ and we have an FPT algorithm for

H-DSN, or
2. there is no FPT approximation scheme for H-DSN computing the (1 + ϵ)-

approximation to this problem, assuming Gap-ETH.

In the following chapters on approximation algorithms, we may therefore only
wish for constant factor approximations at best.
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3. Approximating paths
In this chapter, we 2-approximate H-DSN for a special class H where the problem
is W[1]-hard.

3.1 FPT 2-approximation for paths
We give an FPT 2-approximation algorithm for Path-DSN, where Path is the
class of directed paths. We will use the following notation for this special case.

Definition 6. An instance Π = (G, H, c) of Path-DSN consists of
• a directed graph G with non-negative edge costs c : EG → R+ and
• a pattern graph H which is a directed path on vertices v1, . . . , vk+1 of VG.

This special case of H-DSN therefore uses the k demand pairs (v1, v2), (v2, v3), . . . ,
(vk, vk+1).

In this section we show the following.

Theorem 12. There is a 2O(k) · nO(1) time 2-approximation algorithm for Path-
DSN.

This section may be seen as a prelude to the next one, which generalizes this
result.

By identifying the first and last vertex of a path, we get a cycle. By forming
a pattern graph as the cycle on all vertices, we can solve the general Traveling
Salesman Problem, making Path-DSN not just APX-hard, but NPO-hard [19].
It is in fact easy to see that no polynomial-time constant-factor approximation
exists for Path-DSN, unless P = NP: such factor would allow us to detect
Hamiltonian paths in any graph. Theorem 1 shows W[1]-hardness of Path-DSN.
Most notably, Theorem 3 says that 2 is the best approximation factor obtainable
in FPT time (assuming Gap-ETH).

A strongly connected component (SCC) of a digraph is its inclusion-maximal
strongly connected subgraph. Our algorithm relies on the following observation.

Lemma 13. If an instance Π of Path-DSN is feasible (that is, it has at least
one solution satisfying all constraints), it has an optimum solution N for which
the following holds: the sequence (v1, . . . , vk+1) may be partitioned into certain
sub-sequences V1, V2, . . . , Vr respecting the original order (that is, if vi ∈ Va and
vj ∈ Vb for a < b, then i < j), such that

• for each 1 ≤ a ≤ r, there is an SCC in N , which contains all vertices of
Va and no vertices of any other Vb for b ̸= a. We will call this strongly
connected component Sa.

• For each 1 ≤ a < r, N has a unique path Pa connecting Sa to Sa+1. This
path contains exactly one vertex of Sa and exactly one vertex of Sa+1, and
no vertices of any Sb for b /∈ {a, a + 1}.

Knowing that we can 2-approximate the SCSS problem, our algorithm natu-
rally follows from this lemma. It guesses the partition of the path vertices into

16



sub-sequences, forms 2-approximations of their SCCs and finds minimum-cost
paths between them. All this can be done in the stated time.

We first prove the lemma and then give the precise description of the algorithm
and the analysis of its correctness.

Proof. (Lemma 13)
We assume Π = (G, (v1, . . . , vk+1)) is feasible, and therefore attains an optimum.
Consider any optimum solution N . If an SCC of N contains vertices vi and vj

where i < j, it also necessarily contains all the vertices vh, i < h < j: this follows
from the problem statement, since in N there must be a path from vi to vi+1,
another from vi+1 to vi+2, up to the path from vj−1 to vj, but vi and vj being
in the same strongly connected subgraph of N also implies a path from vj to vi,
yielding a path from any of these vertices to any other. This means that any
SCC inside N that contains some path vertex may only contain consecutive path
vertices.

This observation partitions (v1, . . . , vk+1) into sets V1, . . . , Vr corresponding to
SCCs S1, . . . , Sr in N . The obtained sets may clearly be ordered in the desired
way, as they only contain consecutive vertices of (v1, . . . , vk+1).

If this produces more than just one sub-sequence V1 = {v1, . . . , vk+1}, then
each terminal vertex in Va (a < r) must be connected to Va+1, proving the
existence of a directed path P in N from the SCC Sa to Sa+1. We may denote
its sub-path containing only one vertex of Sa and one vertex of Sa+1 as Pa. The
path Pa cannot contain any vertex of another SCC Sb: such vertex would either
show

• that Va+1 and Vb are parts of the same SCC in N , if a + 1 < b. Here, a
sub-path of P goes from Sb into Sa+1, but the problem statement postulates
that there is also some path in N going from Va+1 to Vb, showing an SCC
including both Sa+1 and Sb, in contradiction to the inclusion-maximality of
both components.

• Or that Vb and Va are contained in the same SCC if b < a, analogously.
Both cases yield a contradiction with our definition of the partition V1, . . . , Vr.

We see that the union of components Sa (a ∈ {1, . . . , r}) and paths Pa (for
1 ≤ a < r) is feasible for Π, and therefore also optimal (N could additionally
contain some zero-cost edges, if they exist in G).

We proceed by describing the algorithm.
We guess the optimum partition of VG = V1∪. . .∪Vr guaranteed by Lemma 13:

a function s : {1, . . . , k} → {0, 1} represents such a guess, where each correspond-
ing part is induced by a maximal sequence of consecutive vertices vi, vi+1, . . . , vi+j

such that s(ℓ) = 0 for each i ≤ ℓ < i + j. There are therefore a total of 2k such
guesses. Our algorithm iterates through all of them. Each iteration proceeds
thus:

We have guessed the partition V1, . . . , Vr. We now apply dynamic program-
ming. For an index i ∈ {1, . . . , r−1} and for an arbitrary vertex u ∈ VG, we define
the number T (i, u) ∈ R+ to be equal to the total cost of our 2-approximation of
the minimum-cost subgraph of G where each Vj for j ≤ i is part of an SCC Sj,
these SCCs are connected by directed paths Pj connecting Sj to Sj+1 for 1 ≤ j < i,
and the SCC containing Vi itself also contains the vertex u.
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To compute T (1, u) for u ∈ VG, we use the 2-approximation (Theorem 4) for
the minimum-cost SCSS containing V1 ∪{u}. For 1 < i < r, we get the recurrence

T (i, u) = min
v,w∈VG

T (i − 1, v) + SCC(Vi ∪ {u, w}) + P (v, w),

where SCC(S) is the total cost of our 2-approximate solution to SCSS for the
set S ⊆ VG and P (v, w) is the minimum-cost path between vertices v and w.

In other words, instead of finding the approximation for the SCC containing
just the set Vi, we also “guess” the vertices v and w: the source and sink vertex
of the path connecting SCCs Si−1 and Si.

Once we have T (r − 1, u) for each u ∈ VG, we get the 2-approximate cost for
the guessed partition as

min
u,v∈VG

T (r − 1, u) + SCC(Vr ∪ {v}) + P (u, v),

i.e., the guess of the source-sink vertices of the path connecting SCCs with Vr−1
and Vr. Clearly, our SCSS approximations and optimal paths between them (from
which we computed functions SCC, P and eventually T ), can be reconstructed
to obtain a corresponding feasible solution to the given Path-DSN instance.

It remains to prove that if we output the minimum-cost feasible solution over
all guessed partitions V1, . . . , Vr, we obtain a 2-approximation.

Proof. (Theorem 12)
If the given instance Π was infeasible, we find no approximate solution and cor-
rectly answer that there is none. Otherwise, Lemma 13 guarantees an optimum
solution with SCCs S1, . . . , Sr and paths P1, . . . , Pr−1 connecting them. The cost
of this solution is the sum of the costs of edges in each Sa and each Pa. These
edge sets are disjoint, since

• an intersection in the edges of Sa and Sb (a ̸= b) contradicts the definition
of an SCC,

• each Pa intersects Sa and Sa+1, each in one vertex, and therefore no edge,
and no other Sb, b /∈ {a, a + 1}, and

• two Pa, Pb (a < b) cannot share an edge: otherwise, Pb starts at a vertex
of Sb and eventually reaches an edge of Pa, which leads to Sa+1(a + 1 ≤ b).
By the problem definition, there is a path from Sa+1 to Sb. We see that
there is a nontrivial path from Sb to itself. This contradicts the inclusion-
maximality of the SCC Sb, as the path contains in addition at least one
vertex of Pb.

One iteration guessed the corresponding partition V1, . . . , Vr. We prove that
this iteration finds a 2-approximation of this optimum. Our output network has
cost at most this 2-approximation.

For this guess, we proceed by iterating over 1 ≤ i < r and computing T (i, u)
for each vertex u. We prove the approximation factor by induction on i: Assume
P1 starts at vertex u ∈ S1 and ends at w. We found T (1, u) by finding a 2-
approximate SCSS containing V1 ∪ {u}. Since S1 ⊇ (V1 ∪ {u}), T (1, u) is less
than or equal to double the cost of S1.

Now assume this induction hypothesis: for 1 ≤ i < r we found a T (i, v)
containing at most a 2-approximation of the sum of costs of Sj and Pk for 1 ≤
j ≤ i, 1 ≤ k < i, where v is the starting vertex of the path Pi. In the induction
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step, we know we also once guess the end vertex w of Pi and the start vertex u of
Pi+1 (if i < r). For this guess, T (i+1, u) is computed by finding the minimum-cost
path between w and u, which has at most the cost of Pi+1, and the 2-approximate
SCSS containing Vi+1 ∪ {u, w}, which has at most twice the cost of Si+1 (which
contains Vi+1 ∪ {u, w} by Lemma 13).

This concludes the induction step. The algorithm found a 2-approximate
solution of Π for this guess of V1, . . . , Vr, and we output the solution with minimal
cost over all guesses, which is at most the one for this guess.

It is worth noting that to apply this reasoning, the guessing of the first and
last vertex of each Pa is necessary. To see this, consider Figure 3.1:

v1 v2

v5

v3

v4

1

1

1

11 2

2

Figure 3.1: A graph showing the necessity of guessing the source and sink vertices
of paths connecting the SCCs. Costs are written for each edge. The black vertex
is not included in the pattern graph.

The optimum partition here is V1 = {v1}, V2 = {v2, v3, v4}, V3 = {v5}, but only
finding the optimum SCC for V2 would yield the triangle between its vertices,
which is an SCC of cost 4. The total cost of thus obtained feasible solution is 8,
while the real optimum is 7, which omits the edge connecting v4 to v2 and instead
uses the SCC containing V2 along with the black vertex - an SCC of total cost
5, the black vertex being the sink vertex of the used path between the obtained
SCCs for V1 and V2.

Our proof relies on the fact that the algorithm finds a 2-approximation of
each Si of an optimum solution. Here we see that for certain graphs, minimum-
cost SCSSes for just the partitions don’t translate to minimum-cost solutions in
total, making the reference to a 2-approximation of the optimum invalid without
guessing the source and sink vertices of these paths.

The condensation graph CH of a directed graph H is the DAG obtained by
contracting each strongly connected component of H into a single vertex. Our
algorithm for Path-DSN guesses which vertices belong to the same SCC. There-
fore, if the pattern graph H wasn’t a path, but only CH was, the exact same
algorithm would still be applicable (vertices of an SCC in H need to be in the
same SCC in any feasible solution as well). With this observation, from now
on we will work with condensations of pattern graphs, rather than the pattern
graphs themselves.
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3.2 2-approximation for multiple paths
We call an arc e of a directed graph H redundant if the graph H −e is transitively
equivalent to H. Observe that for a DAG D, the graph D̂ that has no redundant
arcs and is transitively equivalent to D, is unique: assuming there is another
transitively equivalent D̂2, if we fix a topological ordering u1, . . . , un of the n
vertices of D, which is therefore a topological ordering of both D̂ and D̂2, consider
for contradiction an arc uiuj w.l.o.g. in D̂2 that doesn’t appear in D̂. By transitive
equivalence, there must be a path (ui, uπ1 , . . . , uπℓ

, uj) in D̂ (such that ℓ is at least
1 and for each q: i < πq < j). Once more by transitive equivalence, there must
be paths in D̂2 connecting ui to uπ1 , uπ1 to uπ2 etc. up to one connecting uπℓ

to
uj. Since we have a valid topological order, uiuj must be disjoint from these ℓ+1
paths. But since they connect ui to uj, uiuj is a redundant arc, in contradiction
to D̂ not containing any redundant arcs.

v1 v2

v3 v4

v5 v6

v7

v1

v7

v2

v4

v3

v5

v6

Figure 3.2: A possible pattern graph H, its condensation graph ĈH with redun-
dant edges removed, and an example topological ordering of ĈH . The vertex v7
represents a contracted SCC. The pattern ĈH is the union of three paths (two
aren’t sufficient).

Definition 7. Given a directed graph H, we denote as ĈH the graph obtained by
removing redundant edges from the condensation graph CH . We have seen that
this defines a unique graph.

p-Path is the class of directed graphs H such that the edges E(ĈH) can be
covered by at most p (possibly overlapping) paths. p-Path-DSN is then the DSN
problem restricted to pattern graphs of this class.

Note that we do not require ĈH to be the union of at most p paths, we only
need its edges to be covered by the paths, and ĈH may contain an arbitrary
additional number of isolated vertices (corresponding to isolated SCCs in H).

Figure 3.2 gives an example of a pattern graph H in 3-Path. By combin-
ing our algorithm for Path-DSN with the XP-time algorithm of Theorem 6 for
general DSN, we will obtain the following.
Theorem 14. There is a k! · 4k · nO(p)-time 2-approximation algorithm for p-
Path-DSN, where k is the number of edges of the pattern graph H.
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The algorithm generalizes our approach to Path-DSN. We will again guess a
partition of the terminal vertices. Previously, H was a path and gave a unique
ordering of the guessed parts. Here, we will guess a topological ordering of the
parts, to proceed analogously. Similarly to the Path-DSN’s guessing of tail and
head vertices of Pa in Sa and Sa+1, we will have to devise a guessing procedure for
such vertices for each of the at most p paths. We will see in the correctness anal-
ysis how such guessing corresponds to certain minimal solutions to the problem
instance ∆.

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t1

t7

t2

t8 t3

t9

t4

t11

t10

t5

t6

Figure 3.3: An example pattern graph H, formed by two paths, on the left. A
possible minimal solution to it in some graph G on the right (edge costs omitted).
Solid lines form an SCC containing terminals of both paths, which is enforced by
the pattern. For the rest of edges, dashed ones are dedicated to one path and
dotted ones to the other, both in the pattern and the solution.

Before describing the algorithm, we illustrate a simple pattern graph H and
its possible solution in some G in Figure 3.3. The pattern graph H is the union of
two paths of length six. The solution features two nontrivial strongly connected
components (with more than one vertex), drawn inside dotted rectangles. The
first is a byproduct of taking two paths between terminals, the second contains
four terminal vertices and is enforced by the pattern graph.
The algorithm. On input, we get the instance ∆ = (G, H, c), such that the
edges of ĈH are covered by at most p paths. We proceed as follows.

1. Iterate through all partitions A = {A1, . . . , Ar} of the terminal vertex set VH

such that whenever u, v ∈ Ai and there is in H a path from u to v through
w, then also w ∈ Ai. In particular, vertices of the same SCC in H need to
fall into the same part of A.

2. By contracting the vertices of each Ai into one and greedily removing redun-
dant edges in the resulting graph, we obtain a modified pattern graph H̃
which is necessarily acyclic. Find q ≤ p paths P̃ 1, . . . , P̃ q that cover all
edges of H̃. This can always be done, as H̃ arises from ĈH by contracting
vertex sets, which can only shorten the paths present in ĈH .

3. Iterate through all valid topological orderings t = (ũ1, . . . , ũr) of V (H̃).
Assume that A is numbered in such a way that ũi represents the set Ai.

4. With H̃ and its ordering (ũ1, . . . , ũr) fixed, proceed by the following dynamic
programming (DP) procedure.

The DP procedure introduces another level of guessing. For an index 1 ≤ i ≤ r
in the ordering t and a q-tuple J = (v1, . . . , vq) ∈ V q

G of vertices, the entry
D(i, J) of our DP table stores the cost of an approximate partial solution to ∆
(corresponding to a certain prefix of each path of ĈH).
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If U ⊂ V (G) is a subset of vertices, let S(U) denote the 2-approximate solution
to SCSS given by Theorem 4, where the pattern graph is the cycle on all vertices
of U . Furthermore, for ui, vi ∈ V (G), let

P ((u1, v1), (u2, v2), . . . , (um, vm))

be the minimum-cost subgraph P of G that connects each ui to each vi. By
Theorem 6, this can be computed optimally in nO(m) time. In the case where
uj = vj, the pair (uj, vj) doesn’t result in any demand on P . Naturally, let
c(S(. . .)) and c(P (. . .)) denote the cost of these subgraphs (that is, the sum of
costs of their edges).

For each 1 ≤ i ≤ r, let Bi(J) = Bi(v1, . . . , vq) := {vb | ũi lies on P̃ b}. This is
how we compute the entries of D:

• The base case: Let F (1, J) := S(A1 ∪ B1(J)) and store the value D(1, J) =
c(F (1, J))

• For i > 1, there will be further guessing. We need to iterate through all
ordered subsets C ⊆ (J \ Bi(J)). Each index in J corresponds to one of the
q paths. We may imagine C ∪ Bi(J) as (vσ(1), . . . , vσ(ℓ)). Given an ℓ-tuple
of vertices (v′

σ(1), . . . , v′
σ(ℓ)) ∈ V (G)ℓ, denote for each 1 ≤ i ≤ q

wj :=
⎧⎨⎩v′

j if vj ∈ Bi(J) ∪ C,

vj otherwise.

We compute the entry D(i, J) as

D(i, J) = min
J ′=(u1,...,uq)

∈V q
G

min
C⊆(J\Bi(J))

min
choices of v′

j

∀j: vj∈Bi(J)∪C

c(S(Ai ∪ Bi(J) ∪ C ∪
⋃︂

j:vj∈C

wj))

+ c(P ((u1, w1), . . . , (uq, wq))).

The minimum is obtained for some J ′ ∈ V q
G, and let S = S(. . .) and P = P (. . .)

for the minimum term. We then define F (i, J) = F (i − 1, J ′) ∪ S ∪ P .
Notice that each F (i, J) satisfies all demands of H̃ that appear in t until the

i-th index. This way, F (r, J) is a feasible solution to ∆ for each J , given that ∆
is a feasible instance (otherwise, we detect infeasibility). The algorithm outputs
the minimum-cost F (r, J) obtained for any iteration.

For summary, the whole procedure is sketched in Algorithm 1.
Running time. In the DP routine, we iterate for each i through the nq choices of
J , then there are another nq choices of J ′ on level i−1. We need at most 2q ≤ nq

iterations to enumerate the choices of C, and the set Bi(J) ∪ C has at most q
elements, so we have to iterate through at most nq choices of the v′

i-s. We then
use the 2k · nO(1) algorithm of Theorem 4 to compute S, and the nO(q) algorithm
to compute P . Summing up, the DP routine’s running time is upper-bounded by
r · n4q · 2knO(1) · nO(q) = 2k · nO(p).

A brute-force way to iterate through all choices in steps 1. and 3. is to try
all (at most) k! permutation of the vertices of ĈH and for each that is a valid
topological ordering, partition it into sub-sequences to obtain the partition A.
This is technically done in the opposite order compared to the algorithm, but for
the sake of computing the running time, this counts every valid partition of A,
as the requirement of w ∈ Ai whenever there is a u → w → v path for u, v ∈ Ai
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guarantees a topological ordering of ĈH where all sets Ai occupy consecutive
indices.

This multiplies to the total running time upper bound k! · 2k · 2k · nO(p) =
k! 4k nO(p), as promised.1

We note that if ĈH was the union of at most p paths (with no additional iso-
lated vertices), the number of valid topological orderings may be upper-bounded
by pk rather than k!. The most important fact for us however is that the algo-
rithm runs in FPT time, for greater generality (and to allow isolated vertices in
ĈH), we adopt the running time k! 4k nO(p).
Correctness. Assume the feasibility of the instance ∆ = (G, H, c). Consider its
minimal solution N ⊆ G (such as any edge-minimal optimum solution) and its
condensation graph CN .

• Fix a topological ordering tN = (u1, . . . , um) of CN .
• Each node ui ∈ V (CN) represents a set Ui ⊆ VN ⊆ VG, in the SCC Si.
• For each i, let Vi ⊆ Ui be the terminal vertices contained in Ui (a Vi may

therefore be empty).
• Construct a graph Ĥ from H by contracting the vertices of each Vi into one

ûi and then removing all redundant edges. For an empty Vj = ∅, add an
isolated vertex ûj into Ĥ. This is so that (û1, . . . , ûm) is a valid topological
ordering of Ĥ.

• Because H ∈ p-Path, the edges of Ĥ may be covered by q ≤ p paths
P̂ 1, . . . P̂ q. Any such P̂ j is the concatenation of edges of the form ûaûb,
which induce a demand on any feasible solution (and N in particular).
For each such edge ûaûb, we may fix in N a path Qa,b from Sa to Sb. The
concatenation of such paths with arbitrary paths in each strongly connected
component Sb, connecting the last vertex of Qa,b to the first of Qb,c, results
in a path Pj ⊆ N (induced by P̂ j).

• By edge-minimality, N is the union of paths P1 up to Pq and SCCs S1 up
to Sm. Observe, that if Vi = ∅, all edges of Si are already covered by the
paths P1, . . . , Pq, by edge-minimality of N .

• We now introduce the notion of layers of N . Let (aj)r
j=1 be the increasing

sequence of exactly the indices 1 ≤ i ≤ m such that Vi ̸= ∅. That is,
Saj

is the j-th strongly connected component in tN that contains terminal
vertices.
For each 1 ≤ i ≤ r, consider each path Pb (1 ≤ q ≤ p) and the position of
its vertices in the order tN . If the first vertex v of Pb appears only after uai

in tN , define vi,b = v. Otherwise, let vi,b be the last vertex of Pb in the order
tN to appear at index at most ai. We slightly abuse the notation, as some
vertices of Pb appear in some Sj and aren’t directly represented in tN . We
understand the statement of appearing last in tN as being the last vertex of
tN represented by uℓ, which is either uai

itself, or such that the index ℓ ≤ ai

is maximal.
For 1 < i ≤ r, if vi,b ∈ Uai

, define wi,b to be the first vertex of Pb in Uai
.

Otherwise, let wi,b := vi,b.
1In this analysis, we didn’t compute the time needed to cover E(ĈH) by q ≤, p paths.

Covering the edges of a DAG by a minimum number of paths can be done in polynomial time
using topological induction. The algorithm isn’t completely trivial, but we skip its description,
because even a brute-force approach only adds an f(k) factor, keeping the running-time FPT.
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We illustrate the notions of vi,b and wi,b in figure 3.4: we imagine a certain
topological ordering tN of the strongly connected components of N . Seven
of the SCCs, Sa1 , . . . , Sa7 , contain terminal vertices, drawn as rectangles.
Intuitively said, vi,b is the last vertex of Pb that appears in tN at most as far
as Sai

(or we define it as the first vertex of Pb, if the path only starts after
Sai

in tN). We label a vertex wi,b in the Figure if Pb passes through Sai
and

wi,b is its first vertex in Sai
. With this definition, a vertex may have several

such labels.

v1,1 = v2,1
Sa1

v2,2 = v1,2

Sa2 Sa3 Sa4 Sa5

v5,3=v1,3=v4,3
v6,3

w6,1

v6,1
=v7,1

v7,3 = w7,3
Sa7

Sa6

Figure 3.4: We illustrate the notion of vi,b and wi,b on a topological ordering of
a possible solution N . Here, N is the union of three paths. The paths indexed
as P1 and P2 are drawn using two types of dashed lines. Path P3 is dash-dotted.
There are also two edges drawn using solid lines. They serve to satisfy the same
demands as P1, but in fixing each Pi, we only take simple paths.

• The first layer L1 is defined as S1 (notice that a1 must be equal to 1). For
2 ≤ i ≤ r, we define Li as the union of Sai

and, for every path Pb, its
subpath Pi,b connecting vi,b to wi,b. Each Li is thus a subgraph of N .

We observe that for i < j, the layers Li and Lj are edge-disjoint: First, note that
no Pℓ,b shares an edge with any SCC Saj

(that is, an SCC in F that contains
a positive number of terminals), since we defined these subpaths in such a way
that only their first and last vertex may lie in an Saj

. Further, two SCCs Saj

and Saℓ
are clearly edge-disjoint (even vertex-disjoint), otherwise they form one

strongly connected subgraph of G (and neither one is thus a strongly connected
component by itself). Now consider two paths, Pℓ,a and Pj,b, such that ℓ < j (but
possibly a = b). Assume they share a common edge e. In particular Pj,b starts in
a vertex vj−1,b of Saj−1 , and eventually reaches e. Since e ∈ Pℓ,a, we may further
follow this subpath and reach the vertex wℓ,a of Saℓ

. We have ℓ ≤ j − 1, and two
cases may occur:

• either ℓ < j − 1, but then we have just observed a path from Uj−1 to Uℓ

in F , making T an invalid topological ordering of CF ,
• or ℓ = j − 1, in which case there is a cycle from Saj−1 into itself, which

contains e. In particular, e is part of the SCC Saj−1 . But we have already
proven that Pℓ,a must be edge-disjoint from Saj−1 , which e now contradicts.

We reach a contradiction in both cases, so Li is indeed edge-disjoint from Lj.
Consider the iteration of our algorithm where in A, each Aj is equal to some Vℓ

(we consider this the right guess of A, corresponding to N). With this choice,
our algorithm produces H̃ by contracting the vertices of each Aj, and in iterating
through the topological orderings t of (V (H̃)), one t follows the order of tN .2
For 1 ≤ i ≤ r, let Ji = (vi,1, . . . , vi,q). Using induction, we will prove that

2Each ũj corresponds to some N(ũj) in N . We require t to be such that ũa <t ũb iff
N(ũa) <tN

N(ũb).
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with this ordering t, the computed D(i, Ji), which is the cost of an approximate
subsolution, will be at most twice the cost of Ni = ⋃︁i

j=1 Lj (for each i).
For i = 1, this is trivial, or rather a corollary of Theorem 4: We know that

N1 = S1 must contain the vertices of Vi and of Bi(Ji). By Theorem 4, a 2-
approximation for such SCSS is computed as one of the candidates for D(1, Ji),
and we take the minimum-cost candidate.

The case i > 1 is also not difficult: by the induction hypothesis,

D(i − 1, Ji−1) ≤ 2 · c(Fi−1).

Our DP routine considers all choices of J ′. Fix J ′ = Ji−1 = (ui−1,1, . . . , ui−1,q) in
particular. All vertices of Bi(Ji) necessarily appear in Sai

, so for one choice of C,
the set Bi(Ji) ∪ C is exactly the subset of Ji contained in Sai

, and the algorithm
further considers the choices v′

j = wi,j for vi,j ∈ BiJ ∪ C.
We compute the 2-approximate SCSS

S = S(Ai ∪ Bi(Ji) ∪ C ∪
⋃︂

j:vi,j∈C

wi,j)

and the minimum-cost solution

P = P ((ui−1,1, wi,1), . . . , (ui−1,q, wi,q)).

The layer Li is edge-disjoint from Ni−1 and consists of the SCC Sai
and PN :=⋃︁q

j=1 Pi,j. We defined Sai
and PN in such a way that they are edge-disjoint. We

thus see that

c(Ni) = c(Ni−1) + c(SN) + c(PN), and therefore
D(i, Ji) ≤ D(i − 1, Ji−1) + S + P ≤ 2 · c(Ni−1) + 2 · c(SN) + c(PN) ≤ 2 · c(Ni).

The graph F ⊆ G that we output is the minimum-cost feasible solution we
find, and as such has cost at most D(r, Jr) ≤ 2 · c(N). It is therefore a 2-
approximation.

Algorithm 1 Outline of the algorithm of Theorem 14
Require: DSN instance ∆ = (G, H, c), such that E(ĈH) is covered by q ≤ p

paths.
1: for each valid partition A = {A1, . . . , Ar} of VH do
2: Construct H̃
3: ▷ (from H by contracting vertices of each Ai into one, and removing

redundant edges greedily)
4: for each valid topological ordering t = (ũ1, . . . , ũr) of V (H̃) do
5: Run DP routine to obtain F .
6: ▷ (that is, compute D(i, J) for each 1 ≤ i ≤ r and J ∈ V q

G)
7: end for
8: end for
9: Output the minimum-cost F found (if ∆ is feasible).
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4. Unbounded path count
Our 2-approximation of p-Path-DSN covers a significant class of pattern graphs.
It is by far not general, however. In particular, an out-star (that is, a 1-out-
caterpillar), for which we have an exact FPT algorithm by Theorem 1, may
require an arbitrary number of paths. We extend the notion of caterpillar graphs
to an unbounded length.

4.1 Long caterpillars
Only the condensation of a pattern graph will matter to us.

Definition 8. We call a digraph H an out-caterpillar if ĈH , its condensation
graph with redundant edges removed, is a λ-out-caterpillar for arbitrary λ.

We define in-caterpillars analogously.

Any in-caterpillar can be obtained from an out-caterpillar by edge reversal.
Therefore, let Cat denote w.l.o.g. the class of out-caterpillars. We will design a
3-approximation algorithm for Cat-DSN.
The algorithm. We first convert the pattern graph H to ĈH , which is a λ-
caterpillar. This caterpillar is the union of a path on λ vertices, and the other
vertices, the caterpillar’s “legs”. We denote the set of path vertices as P ⊆ V (ĈH),
and the set of leg vertices will be L. For any vertex u of ĈH , let H(u) denote the
vertex set of the SCC of H that u represents and let for U ⊆ ĈH , H(U) be the
union of sets H(u) for u ∈ U .

We follow the following guessing procedure.
1. Iterate through all such partitions {V1, V2, . . . , Vm} of V (ĈH), that whenever

u, v ∈ Vi and there is in ĈH a path from u to v through w, then also w ∈ Vi.
Each Vi represents the vertices H(Vi).

2. For one such partition, mark its parts as

{V1, . . . , Vm} = {P1, . . . , Pm1 , L1, . . . , Lm2},

such that P1, . . . , Pm1 are precisely the parts in which there is at least one
vertex of P . Furthermore, let this numbering of the Pi follow the order in
which the path vertices appear in the path (if a Pi contains vertices u, v ∈ P ,
it also contains all vertices on the path that appear between u and v, so this
is a valid requirement). The sets L1, . . . Lm2 then only contain leg vertices
of the caterpillar. We present an example of such partition in Figure 4.1:
a caterpillar’s vertices are partitioned into eight parts, drawn inside dotted
areas.

3. Use the algorithm of Theorem 14 to find a 2-approximate solution F ′ for
the union of the path (P1, . . . , Pm1) and the guessed strongly connected
components L1, . . . Lm2 .1

1The non-redundant condensation ĈH′ of the pattern graph H ′ given to this sub-procedure
is the union of a path and isolated vertices, so H ′ is a 1-path.
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V1 = P1 V2 = P2 V3 = P3

V4 = L1
V5 = L2 V6 = L3 V7 = L4

V8 = L5

Figure 4.1: A 3-caterpillar with an example partition of vertices into eight parts
V1, . . . V8. Each part is also labeled as Pi or Lj depending on whether it contains
path vertices.

4. The pattern ĈH is an out-caterpillar, so for each v ∈ L, there is a uv edge
in ĈH for some u ∈ P . For every Li, define

P (Li) = max{j | ∃uv ∈ E(ĈH) s.t. v ∈ Li and u ∈ Pj}

as the farthest SCC on the path P that is demanded to be connected to Li

by the pattern graph H.
Iterate through all m2-tuples (α1, . . . , αm2), such that for each i,

αi ∈ [P (Li), m1].

5. Modify G into G′ by setting the costs of all edges featured in F ′ to 0. For
each Pi, fix a vertex pi ∈ Pi, similarly for each Lj, fix ℓj ∈ Lj.

6. For each 1 ≤ i ≤ m1, let Si := {ℓj | αj = i}.
Separately for each 1 ≤ i ≤ m1, use the algorithm of Theorem 1 to find the
minimum-cost subgraph F ′

i of G′ satisfying the DSN demands given by an
out-star (i.e., 1-out-caterpillar) pattern graph formed by the |Si| demand
pairs piℓj for each ℓj ∈ Si. Only the cost function c changed for G′, so
F ′

i ⊆ G.
The subgraph G ⊇ F := F ′ ∪ ⋃︁

i F ′
i now satisfies all demands of H and

serves as a candidate for an approximate solution.
7. Once all iterations are processed, output the minimum-cost F found in any

iteration.
The algorithm thus relies on two levels of guessing: we guess the partition of
V (ĈH) into parts forming SCCs in F , and we guess the order (α1, . . . , αm2) of
leg vertices as they appear in F .
Correctness. Assume feasibility of the given instance ∆ = (G, H, c). Consider
its minimal solution N ⊆ G (such as any edge-minimal optimum solution). For
a node u ∈ ĈH , all terminals of H(u) need to be strongly connected in N .
Therefore, V (ĈH) may be partitioned into subsets {V1, . . . , Vm} such that for
each i, H(Vi) is the set of all terminals appearing in one SCC of N . By the DSN
problem’s definition, if u, v ∈ Vi and there is a path from u to v via w in ĈH , then
also w ∈ Vi. Furthermore, The Vi-s that feature vertices of the path P may be
renamed and ordered as they appear on P : P1, . . . , Pm1 . The other SCCs (with
only leg vertices) may be renamed to L1, . . . Lm2 (m1 +m2 = m). This is precisely
how we viewed our guess when describing the algorithm.

Theorem 14 guarantees that the partial solution F ′ we obtain in step 3. is a
2-approximation for the pattern formed from the path (P1, . . . , Pm1) and isolated
SCCs L1 up to Lm2 . The solution N features both the path and the SCCs, and
so the cost c(F ′) is at most twice the cost c(N).
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By the problem statement, to each (SCC containing) Lj there leads a path
in N from some (SCC containing) Pi. This i need be at least P (Lj), using our
former notation, as H has an edge uv for u ∈ H(Pi) and v ∈ H(Li). For each j,
let Cj denote the path in N connecting Pi to Lj (with exactly one vertex pj of Pi

and one ℓj of Lj in Cj) for i maximal, and let αj denote this maximal i. Denote
as Ni the union

Ni =
⋃︂

j: αj=i

Cj.

We may observe that for two indices p < q, the vertex-intersection Np ∩ Nq is
empty: Consider a vertex v in both a path Cp of Np and Cq of Nq. But we
defined Cp to be the path from the furthest Pi on the path P to some SCC Lj.
The intersection in v shows that there is a path from Pq into Lj, contradicting
that Cp belongs to Cp.2

Consider the iteration of the algorithm (step 4.) where (α1, . . . , αm2) is exactly
as denoted in the last paragraph. Our partial solution F ′ connects all vertices of
each Pi and each Lj into SCCs, so that adding to F ′ a path from an arbitrary
pi ∈ Pi to an arbitrary ℓj ∈ Lj (as performed by the algorithm) amounts to
connecting any other vertex of Pi to any one of Lj. Theorem 1 then says that the
cost c(F ′

i ) is at most c(Ni). And since the Ni-s are vertex-disjoint (and therefore
edge-disjoint), the cost of the union c(⋃︁i F ′

i ) is at most ∑︁i c(Ni) = c(⋃︁i Ni) ≤
c(N).

Summing all terms up, we have

c(F ) = c(F ′ ∪
⋃︂
i

F ′
i ) ≤ c(F ′) + c(

⋃︂
i

F ′
i ) ≤ 2 · c(N) + c(N) = 3 · c(N).

Each F found by the algorithm (in any final iteration) is a feasible solution of ∆.
We output the minimum-cost one found, and so in particular one with cost at
most 3 · c(N) = 3 · OPT , considering an edge-minimal optimum solution N .
Running time. As we have proven in the previous chapter, the number of
partitions produced in step 1. of our algorithm is at most 2k · k!. Using Theorem
14 in step 3. to compute a 2-approximate 1-Path-DSN sub-procedure requires
time 4k · k! · nO(1). Ignoring polynomial steps, we further have to guess the αi-s in
step 4. As an upper-bound, there are at most k! choices of such m2-tuples. For
each such guess, we have to compute the (at most k) out-stars (1-out-caterpillars)
F ′

i . This results in a further factor of k · 2k · nO(1). Summing up, the total time
is 2k · k!(4k · k! · nO(1) + k · k! · 2k · nO(1)), and we can conclude:

Theorem 15. There is an 8k · (k!)2 · nO(1)-time 3-approximation algorithm for
the Cat-DSN problem, where k is the number of demand pairs.

4.1.1 Multiple caterpillars
Following the previous chapter, it is natural to extend our result to pattern graphs
formed by several caterpillars. Define p-Cat to be the class of pattern graphs H
such that ĈH is the union of at most p caterpillars (we may allow both in- and

2Furthermore, this intersection hints at a redundancy in Cp (making it intersect Cq), con-
tradicting the edge-minimality of N .
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out-caterpillars). Any instance of p-Cat-DSN may be approximated by finding
the q ≤ p caterpillars covering ĈH and running the algorithm of Theorem 15
q times, resulting in the following:

Corollary 1. There is an f(k) · nO(1)-time 3p-approximation algorithm for the
p-Cat-DSN problem, where k is the number of demand pairs.

Theorem 5 gives us a lower-bound for the approximability of p-Cat-DSN:
As discussed, a more elaborate statement of Theorem 5 deals with the class K
of complete bipartite graphs H = Kp,p = (A, B, E) with edges oriented in the
direction of the part B. The theorem states that for any constant ρ > 0, there is
no f(p) ·nO(1)-time p1/2

2(2 log p)1/2+ρ -approximation algorithm for K-DSN (if Gap-ETH
holds).

Since each directed complete bipartite graph Kp,p ∈ K is the union of p out-
stars,3 it is also in p-Cat. We obtain the following.

Corollary 2. Assuming Gap-ETH, for any function f and any constant ρ > 0,
there is no f(p) nO(1)-time p1/2

2(2 log p)1/2+ρ -approximation algorithm for p-Cat-DSN.

We obtained this lower bound in a very trivial way: the Kp,p is the union of
simple out-stars. It doesn’t use the potential of p arbitrarily long caterpillars.

We should remark that in the same trivial way, we can get a matching lower
bound, under the less established Strongish Planted Clique Hypothesis (SPCH).
[20] proved the following:

Theorem 16. ([20, Corollary 14.]) Assuming SPCH, there is no f(p) · nO(1)-
time algorithm that can approximate K-DSN to within a factor of o(p) for any
function f , where K is the class of directed complete graphs Kp,p, as above.

This gives the immediate corollary.

Corollary 3. Assuming SPCH, there is no f(p) · nO(1)-time algorithm that can
approximate p-Cat-DSN to within a factor of o(p) for any function f .

This would imply that Corollary 1 gives an asymptotically optimal approxi-
mation ratio for p-Cat-DSN.

Using XP time, however, we can improve the approximation bound. We need
another definition.

Definition 9. Let (χ, π)-Cat denote the class of patterns (directed graphs) H,
such that the edges of ĈH can be covered by the union of at most κ caterpillars4

and at most π paths.

Now recall how we 3-approximated Cat-DSN in Theorem 15. We separately
found a 2-approximation for the path in the caterpillar and the out-stars leading
from this path into the leg components L1, . . . Lm2 . We may slightly modify this
algorithm as follows.

3One for each vertex of the part A, with p edges branching to all vertices of B. Equivalently,
it’s the union of p in-stars, one for each vertex of B.

4Each either an in- or out-caterpillar of arbitrary length.
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1. Given instance ∆ = (G, H, c), iterate through all such partitions {V1, V2,
. . ., Vm} of V (ĈH), that whenever u, v ∈ Vi and there is in ĈH a path from
u to v through w, then also w ∈ Vi.

2. Contract the vertices of each Vi into one, thus obtaining the graph H̃. De-
compose H̃ into c ≤ χ caterpillars, p ≤ π paths and possibly d isolated
components I1, . . . Id (we may have an arbitrary number of them). More
precisely, the i-th of the c caterpillars is formed by the path P Cat

i , leg com-
ponents Li,1 up to Li,ℓi

and edges leading from P Cat
i into the leg components

(as discussed in the previous section). Name the j-th of the p paths P Path
j .

3. Instead of computing approximations for the caterpillars one by one, find
the 2-approximate solution F ′ for all paths and isolated SCCs at once. That
is, use Theorem 14 as a sub-procedure for the pattern graph given by the
union of all P Cat

i -s, all P Path
j -s, Li,m-s, and all Iq-s. This pattern is in

(c + p)-Path, and so this can be done in time f(k) · nO(c+p).
4. Modify G into G′ by setting all weights of edges in F ′ to zero.
5. One by one, for each 1 ≤ i ≤ c, proceed exactly as in Theorem 15: Imagine

we are only approximating the i-th caterpillar. The path P Cat
i has already

been computed and we have to connect the legs of the caterpillar by isolated
out-stars (or in-stars). The subgraph F ′

i obtained this way (as the union of
DSN solutions for separate star pattern graphs) has cost at most OPT .

6. Output the union of F ′ and ⋃︁c
i=1 F ′

i .
This leads to the following.

Theorem 17. There is an f(k) · nO(χ+π)-time (2 + χ)-approximation algorithm
for (χ, π)-Cat-DSN.

The argumentation is exactly the same as in Theorem 15, and we will not
repeat it precisely.

4.2 Special cases
The (χ, π)-Cat-DSN problem and its approximation by Theorem 17 generalizes
all of our previous approximation algorithms. (χ, π)-Cat is a superclass of the
class C∗

λ,δ for which DSN is FPT-solvable by Theorem 1, and it also contains the
directed complete bipartite graphs Kp,p for which Theorems 5 and 16 give strong
approximation lower bounds.

What lies between the two? It is a challenging open problem to give the full
approximation complexity landscape for H-DSN. We now propose two particular
classes of pattern graphs that seem to be significant. We believe that resolving
the FPT approximability of these special cases would give important insight into
the general problem.

4.2.1 d-Diamonds
Definition 10. A d-out-diamond is a directed graph formed as follows: Take a
set v1, . . . , vm of m vertices and d other “root” vertices r1, . . . , rd. The edge set
will be exactly

{rivj | 1 ≤ i ≤ r, 1 ≤ j ≤ m}.
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Let δ-Diamond be the class of d-out-diamonds for d ≤ δ.

See Figure 4.2 for an illustration. The focus on out-diamonds is without loss
of generality, as reduction from in-diamonds is trivial by edge-reversal.

v1 v2 ... vm

r1 ... rd

Figure 4.2: A d-out-diamond is the union of d out-stars.

The 1-Diamond-DSN is the well studied Directed Steiner Tree (DST),
which is NP-hard by a trivial reduction from the undirected Steiner Tree (of
Karp’s seminal paper [4]). Polynomial-time polylogarithmic inapproximability of
DST is shown by [21]. On the other hand, DST is FPT by 1.

We dedicated Section 2.1 to showing FPT (4
3 − ϵ)-inapproximability of 2-

Diamond-DSN under Gap-ETH. This problem already yields open questions:
we do not have a matching upper bound. We can trivially 2-approximate by two
out-stars (this way, we can d-approximate any d-diamond), but we do not know
whether this ratio can be improved, or how to find a tighter inapproximability
bound.

A special case of a δ-Diamond is the complete directed bipartite graph Kδ,δ,
which is f(δ) · nO(1)-time inapproximable to within polynomial factors in δ by
Theorems 5 and 16.

Exposition to this problem, including the observations we just stated, suggests
it being likely that hardness of approximation increases with δ. We propose the
following conjecture.

Conjecture 2. There is a constant α > 0 such that for any function f , there is
no f(k) · nO(1)-time (α · δ)-approximation algorithm for δ-Diamond-DSN, where
k is the number of demands.

In fact, we can’t see how XP time in δ helps substantially decrease the ap-
proximation ratio of this problem, and we strengthen our conjecture further:

Conjecture 3. There is a constant β > 0 such that for any functions f , g,
there is no f(k) ·ng(δ)-time (β ·δ)-approximation algorithm for δ-Diamond-DSN,
where k is the number of demands.

Not having tight approximability bounds for δ-Diamond-DSN poses a large
gap in our knowledge of H-DSN in general. Proving or contradicting these con-
jectures is thus important for approaching the full approximation complexity
landscape of this general problem.
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4.2.2 Grids
One other interesting subclass of p-Cat is the following.

Definition 11. For any m ≥ 1, a p-grid of length m is a directed graph formed
thus: Take p vertex-disjoint directed paths P1, . . . , Pp of length m, where Pi =
(vi,1, vi,2, . . . , vi,m). Add edges vi,jvi+1,j for every 1 ≤ i < p and 1 ≤ j ≤ m.
See Figure 4.3 for an illustration. Notice that this is a DAG with no redundant
edges.

Let π-Grid be the class of p-grids for p ≤ π (and arbitrary length m).

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6 v1,7 v1,8 v1,9 v1,10 v1,11 v1,12 v1,13

v4,1 v4,2 v4,3 v4,4 v4,5 v4,6 v4,7 v4,8 v4,9 v4,10 v4,11 v4,12 v4,13

Figure 4.3: Example of a 4-grid of length m = 13.

For a π ≥ 2, π-Grid is not a subclass of p-Path for any constant p. That
is to say that with increasing length m, we get an arbitrary number of paths
necessary to cover the edges of the grid.

We can cover a p-grid by p − 1 caterpillars and an additional path, where the
caterpillars have the special property that each path vertex is connected to only
one leg vertex. On the other hand, the connections in the grid allow for far less
generality of the π-Grid-DSN compared to its superclass (π − 1, 1)-Cat-DSN.

Theorem 1 gives an FPT 3π-approximation algorithm for π-Grid-DSN (and
Theorem 17 gives (1 + π)-approximation using time XP in π). We do not know
if this approximation bound can be improved substantially (in FPT time, or in
XP time f(k) · ng(π)). Neither is it clear how to obtain a strong approximation
lower bound for this special case.
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Conclusion
We have elaborated on several previous results. In Chapter 2, we extended The-
orem 1 into the following.

For a recursively enumerable class H of directed graphs,
1. Either H ⊆ C∗

λ,δ for some constants λ, δ and there is an FPT algorithm for
H-DSN, parameterized by the number of demands k, computing its optimum
solution,

2. or there is no FPT (4
3 − ϵ)-approximation algorithm for H-DSN, assum-

ing Gap-ETH. In particular, this implies that there is no FPT (1 + ϵ)-
approximation scheme for this problem.

In Section 3.2, we extended Theorem 6:

There is a k! · 8k · nO(p)-time 2-approximation algorithm for pattern graphs
formed by p paths (and other more general graphs).

Then in Section 4.1.1, we extrapolated into several long caterpillars, rather than
paths, obtaining an asymptotically optimal approximation ratio under SPCH.

This is still far from a complete approximation complexity landscape which
would provide the approximation equivalent of Theorem 1. In Section 4.2, we
suggest directions that may lead beyond the results of this thesis.
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List of Abbreviations
• DAG: Directed acyclic graph

• DP: Dynamic programming

• DSN: The Directed Steiner Network problem (see Definition 1)

• ETH: The Exponential-Time Hypothesis

• FPT: Fixed-Parameter Tractable

• Gap-ETH: A strengthening of the ETH (see Conjecture 1)

• SCC: Strongly connected component (an inclusion-maximal strongly con-
nected subgraph of a directed graph)

• SCSS: Strongly Connected Steiner Subgraph (see Definition 4)

• SPCH: Strongish Planted Clique Hypothesis

• XP: Slicewise Polynomial Time
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