
Řešení cvičení 12

Kvízová otázka: Pro lineární zobrazení f : R2×2 → R2×2 dané předpisem
f(A) = A−AT rozhodněte, které vektory patří do jádra a které do obrazu.

(a) I2,

(b)
(
0 0
0 0

)
,

(c)
(
1 1
1 1

)
,

(d)
(

0 1
−1 0

)
.

Řešení: Můžeme rozmyslet, že pro A =
(
a b
c d

)
platí

f(A) =

(
0 (b− c)

(c− b) 0

)
,

takže každá matice z obrazu f musí být tvaru
(

0 x
−x 0

)
(není nic speciálního

na dimenzi 2× 2; taková „antisymetrie“ platí pro obecné zobrazení A 7→ A−
AT ). Naráz je snadno vidět, že každá matice takového tvaru je obrazem nějaké
matice.
Také můžeme rozmyslet, že z definice jádro tvoří právě symetrické matice.
Teď už snadno vidíme, že a) patří do jádra, ale ne do obrazu, b) do obojího,
c) jen do jádra a d) jen do obrazu.

Úloha 1. Rozhodněte, zda je zobrazení f : R3 → R3 dané předpisem

f(x, y, z) = (x+ y − 2z, y − z, x− y)T

izomorfismem R3 na sebe sama (tzv. automorfismem).

Řešení: Z přednášek víme, že lineární zobrazení je izomorfismus právě tehdy
když je jeho matice (vůči kterýmkoli bázím) regulární. V našem případě snadno
ověříme, že to f nesplňuje:

kan[f ]kan =

1 1 −2
0 1 −1
1 −1 0

 ∼∼

1 1 −2
0 1 −1
0 0 0

 ,

takže f není automorfismus.

Úloha 2. Jak z matice BV
[f ]BU

poznáme, zda je zobrazení f : U → V prosté,
resp. „na“?



Řešení: f je prosté právě když f(x) = 0 jen pro nulové x. Jinými slovy,
BV

[f ]BU
· v musí platit jen pro nulový vektor v. Ještě jinými slovy, BV

[f ]BU

musí mít lineárně nezávislé sloupce.
Lineární zobrazení f je na právě když dimenze jeho obrazu je rovna dimenzi
V (pak už nutně dostaneme celý prostor V jako obraz). Tím pádem je f na
právě pokud rank(BV

[f ]BU
) je roven počtu řádků BV

[f ]BU
, tj. počtu vektorů

báze prostoru V . Jinými slovy, f je „na“ právě tehdy když BV
[f ]BU

má lineárně
nezávislé řádky.
Můžeme si ještě všimnout, že jsme znovu nahlédli, co už víme: že f je izomor-
fismus (prosté a na zároveň) právě když jeho matice je regulární.

Úloha 3. Najděte lineární zobrazení g : R3 → P2 takové, aby

f(g(f(P2))) = f(P2),

pokud lineární zobrazení f : P2 → R3 definujeme předpisem

f(ax2 + bx+ c) = (a+ 2b+ c, a+ b− c, 2a+ 3b)T (pro a, b, c ∈ R).

Řešení: Definujme bázi B = {x2, x, 1} prostoru P2 a označme jako K kano-
nickou bázi prostoru R3. Pak

A := K [f ]B =

1 2 1
1 1 −1
2 3 0

 .

Chceme, aby funkce f ◦ g ◦ f měla stejný obraz, jako f . Obraz f přitom od-
povídá dvoudimenzionálnímu sloupcovému prostoru S(K [f ]B) generovaného
např. prvními dvěma sloupcovými vektory (jak se za chvíli také přesvědčíme
pomocí Gauss-Jordanovy eliminace). Chceme docílit toho, aby K [f ◦ g ◦ f ]B
mělo stejný sloupcový prostor jako K [f ]B . My přitom dokonce umíme docílit
toho, aby se matice K [f ]B a K [f ◦ g ◦ f ]B shodovaly v prvních dvou sloupcích.
Naše B [g]K najdeme pomocí Gauss-Jordanovy eliminace:1 2 1 1 0 0

1 1 −1 0 1 0
2 3 0 0 0 1

 ∼∼

1 0 −3 −1 2 0
0 1 2 1 −1 0
0 0 0 −1 −1 1

 = (A′ | B [g]K) .

Tím jsme se nejen přesvědčili, že prostor S(K [f ]B) je generovaný prvními
dvěma sloupci K [f ]B (protože první dva sloupce jsou bázické), ale našli jsme



taky matici B [g]K takovou, že B [g]K · A = A′ a díky tvaru matice A′ se
K [f ◦ g ◦ f ]B = A · B [g]K · A = A · A′ v prvních dvou sloupcích shoduje s
A.
Můžete ověřit, že matice K [f ◦ g ◦ f ]B má (stejně jako A) hodnost 2 a její
sloupcový prostor je generovaný prvními dvěma sloupci. Není to ale potřeba,
protože násobek matice A obecně nemůže mít vyšší hodnost než A.
Abychom neskončili jen u matice, zobrazení g můžeme taky dát předpisem

g(a, b, c) = (2b− a)x2 + (a− b)x− a− b+ c.

Úloha 4. Nalezněte matici A, která splňuje zároveň obě podmínky:

• Ker(A) = span{(1,−1,−1)T , (1, 1,−3)T },

• Ker(AT ) = span{(1, 2, 4)T , (0, 1, 1)T }.

Řešení: Dostali jsme jádra definovaná dvěma lineárně nezávislými vektory (v
obou případech, jinak by ani taková A rozměru 3 × 3 neexistovala). Budeme
tak hledat A ∈ R3×3 hodnosti 1. Jinými slovy, budou existovat takové vektory
u, v ∈ R3, že A = u · vT .
Co nám říká zadání je, že

vT

 1
−1
−1

 = vT

 1
−1
−3

 = 0 a uT

1
2
4

 = uT

0
1
1

 = 0.

To jsou dvě soustavy dvou lineárních rovnic. Obě mají 1D množinu řešení (jak
už jsme nahlédli nahoře, když jsme konstatovali lineární nezávislost zadaných
vektorů). Náš úkol je jen vybrat nějaká nenulová řešení. Tak třeba

u := (−2,−1, 1)T ,

v := (2, 1, 1)T ,

což vede na matici

A = uvT =

−4 −2 −2
−2 −1 −1
2 1 1

 .



Řešení 5. Rozhodněte a zdůvodněte, která tvrzení jsou pravdivá:
5a) „V každém tělese charakteristiky 2 platí (a+ a)b = a(b+ b).“
To platí, protože (a+ a) = a(1 + 1) = a · 0 = 0 = b · 0 = b(1 + 1) = (b+ b). Na
obou stranách je nula.

5b) „Buďte A,B ∈ Rn×n matice stejné hodnosti. Pak A lze elementárními
řádkovými úpravami převést na B.“
To nemusí platit. Např

(
1 0

)
a
(
0 1

)
jsou dvě matice hodnosti 1, ale řádko-

vými úpravami jednu z druhé nedostaneme, protože mají nenulové hodnoty v
různých sloupcích.
Víme ale, že například dvě regulární matice stejné hodnosti (tedy stejných
dimenzí n× n) na sebe řádkovými úpravami převést jdou.

5c) „V prostoru R3 existuje čtveřice nenulových vektorů {u, v, w, z} taková, že
{u, v, w} je báze, ale žádná jiná trojce báze není.“
Když jsou vektory nenulové, tak tohle neplatí, jak víme z lemmatu o výměně
z přednášky.

5d) „Počet lineárních zobrazení mezi prostory Z4
3 → Z2

3 je 38.“
Ano, to platí. Víme, že lineární zobrazení odpovídají 1 : 1 maticím zobrazení,
a v našem případě půjde o matice typu Z2×4

3 , kterých je 32·4.


